COMPRESSION EQUATION OF WATER-SATURATED
SAND AND ITS USEFUL LIMITS

V. A. Krivtsov UDC 624,131,439.7

An approximate equation of state of a multicomponent medium has been introduced [1] in which the
values of the compressibilities of the components occur. In this note, the actual values of the cubic content
of the components are determined, an analysis of the compression equation is presented, and its useful
limits are determined for water-saturated sand. '

It is assumed as the basis of the model of the medium [1] that the solid component, which is a finely
dispersed medium, does not form a shell, and is in the suspended sate, and that each component is com-
pressed according to a law proper to it in the free state. This model is applicable to water-saturated sand
if in a dilute (quicksand) state. Experiments conducted on water-saturated sand have demonstrated that the
equations [1] are acceptable in certain cases when a skeleton [2] is present in it.

Let us determine the actual values of the cubic content of the components, analyze them and the com-
pression equation, and estimate the degree of influence of the skeleton when the sand is compressed.

We will consider a compression equation and the cubic content of the components of water-saturated
sand. Suppose that the cubic content of the gaseous, liquid, and solid components at P = Py is o4, &, 03,
the specific voiume of each being V4, Vi, and V3, the density pi, p2, and p3 and the speed of sound in them
¢y, ¢, and c3.

At a pressure P > P the corresponding components and parameters will be starred, i.e., @1¥, ay*,
ag*, Vi*, Vo*, Vi*, pi*, o™, ps*, and the actual density of the three~component medium will be denoted by p.

Suppose the compression of each component corresponds to the Tate equation, i.e.,
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where AP is excess pressure, and B is the mean intermolecular pressure of a component, which for air is
equal to atmospheric pressure, i.e., By = piciz/ v = Py, and for water and quartz, respectively, By = p2022/ Y2,
Bg = p3032/73, Vyand V are the initial and actual values of the specific volume of a component, and v is the
isentropic exponent of a component.

The actual values of density and specific volume of the components, in correspondence with Eq. (1),
are given by
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and the cubic content of the components will depend on compressibility and on the initial cubic content of
each component, i.e.,
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Further, substituting in Eq. (3) the values of the specific volumes from Eq. (2) and dividing the num-
erator and denominator of the right side by the initial volume V; of the three component media, we obtain
the actual values of the cubic content of each component
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TABLE 1

Parameters
Components
o P, g/em’® |c, m/sec Y
Air 0.29 0.00122 340 45
Water 0.16 1.00 1450 7.1 1%
Quartz 0.55 2.65 4500 3
TABLE 2
f/cm’
Param= kgf/cm
eter
0 1.0 5.0 2 50 100 200 500 1000
pl*/pl 1 1.64 3.66 9.30 18.0 30.0 50.5 102 168
{32"/;;Z 1 1.000 | 1.000 | 1.001 1.002 1.004 | 1.010 | 1.022 | 1.041
&'/ 1 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.001 1.002
0(1& 0.29 0.20 0.101 0.042 0.023 0.0134| 0.0081] 0.0040 § 0.0025
ocz‘ 0.16 0.18 0.203 0.216 0.220 0.222 0.221 } 0.220 0.218
063" 0.55 0.62 0.696 0.742 0.757 0.765 0.771 1 0.776 | 0.779
p, g/ 1.62 1.823 | 2.047 | 2.183 | 2.227 2.250 | 2.267 | 2.282 | 2.292
, g/cm
Equations (2) and (4) allow us tain [1
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To analyze the Eqs. (4) we have obtained, and the well-known dependences (2)and (5)[2] we take the
following initial data (Table 1).

The results of calculations conducted using Egs. (2) and (4)~(6) are presented.in Table 2.

It follows from Table 2 that the compressive strain values of the components in the free state differ
highly for air and the two other components and are close to each other for water and garutz. The value
of -ay* decreases and that of a3* increases with increasing pressure; a,* first increases and then de-
creases, The physical meaning of this variation of a,* is that at low pressures, the volume of the gas com-
ponent substatially decreases, and the gas density significantly increases,whereas the liquid and solid
particles maintain their volumes and densities practically invariant. In this case, the content of the gas
component in a unit volume of the medium decreases, and the content of the liguid and solid components
increases, With a further increase in pressure, namely when the absolute size of the increase in @* be-
comes greater than the increment in the gas component, ®;* begins to decrease, and o3* will continue to
increase, since the compressibility of the solid component is less than that of the liquid, It is not possible
to obtain an analytic expression from Eq, (4) for the pressure at which e»* is at a maximum.

The compression Eq. (5) can be replaced down to pressures of 200 kgf/ cmz, due to the low compressi-
bility of water and quartz in comparison with that of air, by the simpler dependence
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APT1 =Yy []-1
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whose maximal error is less than 1%.

Let us consider the useful limits of the compression equation for water-saturated sand, To estimate
the degree of influence of the skeleton on the useful limits of the equation [1]1let us examine Fig, 1, which
presents curves 1-5 obtained using Eq. (6) with the initial data given in Table 3, together with curves for
hydrostatic compression of dense (6) and mellow (7) sand in the dry-air state taken from [4].
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TABLE 3 4% '

a2.0¢
Curves Sand components 40— // 79 m—
in Fig, A /Fwa/a
1 231 %] o3 & / /
1 1o 0.24 | 0.76 / /
2 0.02 [ 0.22 | 0.76 w
AR AR A
5 | 045 | 009 | 0.78 / / %g=07
6 | 024 | 0 0.76 20 {
7 0.34 0 0.66
w4 2 kg/em
J x L ]
& Z 4 § g
; Fig, 2
an - A dense sand (curve 6) has a porosity of 0.24,
Attached water is absent at the particle interfaces of
this sand, so that capillary forces, which can be re-
Q65— : presented as the shearing strength in compression,
wg=0 7 are absent, Water-saturated sand with a skeleton has
a porosity close to the porosity of condensed sand in
/p'ﬁ% kg/e mz the dry-air state and capillary forces are also absent
0 5 7 at the particle interfaces. Consequently, compression
. processes for the skeletons of water-saturated sand
Fig. 3 and of dense sand in the dry-air state must be identical

since they consist of the super—packmg of the particles
and in the condensation of the sand. Curve 7 for friable sand at pressure of 100 kgf/ cm’ attest to a similar
process, It may be noted in Fig. 1 that the difference in deformations of curves 6 and 7 for fixed pressures
AP = 100 kgf/cm® remain constant and equal to 0.1,

If we assume that the compression curve for the skeleton of water-saturated sand is similar to curve
6, a comparison of curves 1-5 with this curve (Fig. 1) will allow us to assess the useful limits of Eq. (6)

Dependences are presented in Fig. 2, obtained from Fig. 1 for the relative value of pressure
AP, (e)
B L 1009
AP, () + AP (8) %
on compressive stress at constant initial content of the solid component 3 of 0.76 and four values of the

gas component &y = 0, 0,02, 0.05, and 0,10,

Here, the function AP () is determined from Eq. (6) and describes curves 1-5, while the function
AP (€) describes curve 6 (Fig. 1). The values of pressure APy (y axis in Fig. 2) is the sum of APy =
APy (€) + AP, E)).

The curves in Fig. 2 demonstrate the degree of accuracy of Eq. (6) as a function of compressive
pressure and gaseous component content,

An analysis of these curves shows that when @y = 0 the skeleton scarcely affects the compressive
curve of water-saturated sand., With increasing @ the role of the skeleton in the region of low pressure
substantially increases and the accuracy of Eq. (6) decreases, With further increase in compressive
pressure, the influence of the skeleton on compression decreases, and the accuracy of Eq. (6) increases.

Our technique permits the useful limits of the equation [1] to be established with a givendegree of
accuracy if we know the compressive curves of the skeleton of sand in the dry-air state. In Fig, 3, two
such limits are constructed for an actual example with accuracies of 80% and 90%. The regions under the
boundary curves characterize the usefulness of Eq. (6) for different @3 = 0,76. In the regions above the
boundary curves, Eq, (6) is not applicable at these accuracies.

For sandy soils with the same content of the components as considered above but with different re-
maining characteristics (form of particles, state of their surface, granulometric composition) the relation-
ships we have obtained as experiments have shown, are satisfied to a degree sufficient for actual use.
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The analysis conducted shows the usefulness of the equation {1} to a previously specified accuracy
for water-saturated sand containing a skeleton. It follows from the analysis that the compression equation
can be applied to a degree of accuracy suificient for practical purposes also for other soils, in particular
clay if the skeleton compression curves and their structural relations are known,

Thus the compression equation acquires a universality when applied to different multicomponent
media containing a skeleton,
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